
Computer Aided Geometric Design 25 (2008) 157–161

www.elsevier.com/locate/cagd

All triangulations are reachable via sequences of edge-flips:
an elementary proof
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Abstract

A simple proof is provided for the fact that the set of all possible triangulations of a planar point set in a polygonal domain is
closed under the basic diagonal flip operation.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Triangulation of point sets is an important task in many areas including computer graphics, computational geom-
etry, and finite element computations. There are many ways we can triangulate a given set of points, and we might
prefer one triangulation over another. Often a functional that maps every triangulation to a “quality measure” is intro-
duced and we want to maximize this measure by an algorithm that starts with an arbitrary triangulation and transforms
triangulations into a better ones by applying some simple operation. In this context the question whether we can reach
the optimal triangulation from an arbitrary, initial one, naturally arises. More generally we may ask whether all trian-
gulations are reachable by applying a sequence of the transformation operations?

For a well-known and basic edge-flipping operation the answer is yes. Edge-flipping can be performed for any two
adjacent triangles of a given triangulation that jointly form a convex quadrilateral: we replace their shared edge with
the other diagonal, as shown in Fig. 1.

The fact that the world of triangulations is closed under edge flips is not new. It was first proved, for convex
polygons, by Lawson in 1972 (Lawson, 1972). All available proofs today are based on various geometric properties
that often, despite their intuitive “obviousness”, need lengthy and case-based proofs.

We present here a simple mathematical argument which reduces the use of geometric properties to several obvious
and easily proved facts. Our proof is based on mathematical induction and is logically divided into two parts: first,
we show flip-closure of the set of triangulations of an empty polygonal region, then we extend the proof to a set of
points in a polygonal domain. Note that triangulation of an arbitrary set of points is a particular case of points inside
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Fig. 1. The edge-flipping operation.

Fig. 2. Dual-tree of a simply connected polygonal region. Note that some triangles have overlapping, nevertheless different, edges, e.g., triangles
p2p3p4 and p5p6p8 and consequently there is no edge in the dual tree connecting corresponding vertices.

a polygonal domain, since every such triangulation will include all edges of the convex hull, unambiguously defined
by the point set.

2. Flip-closure of triangulations of polygonal domains

First we re-state the famous “two-ears” theorem (Meisters, 1975) in a slightly stronger version for simply con-
nected polygonal regions. Recall that a polygonal region has a ear at vertex Vi if in the triangle formed by the three
consecutive polygon vertices Vi−1ViVi+1 the (open) chord connecting Vi−1 and Vi+1 lies entirely inside the polygon.

Theorem 1. Every nontrivial polygon with simply connected interior (that can be triangulated into more than one
triangle) has two disjoint ears.

The original theorem is usually proved for simple (Jordan) polygons only. The theorem remains true for a slightly
wider family of polygons, the possibly self-touching polygons, having a simply connected interior. The original proof
by Meisters works but instead we rely on the short proof found in O’Rourke (1987).

We first recall the definition of the Dual-graph: given a triangulated polygon with simply connected interior, the
dual-graph is a graph generated by placing a vertex in each triangle and joining by edges vertices corresponding to
adjacent triangles (triangle which share a side), as shown in Fig. 2. Note that this graph must be a tree, i.e., a graph
without loops, since a loop would necessarily imply the existence of an internal point in the polygon and our polygon
is, by assumption, empty.

Proof. Leaves in the dual-tree of the triangulated polygon correspond to ears and every tree of two or more vertices
has at least two leaves. �
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Next we show that one can transform any given triangulation of a polygon having simply connected interior into
any other triangulation of the polygon.

Theorem 2. Given two triangulations T1 and T2 of a polygon with simply connected interior, one can transform T1
into T2 by means of edge flips.

Proof. We shall prove the theorem by induction on the number n of the polygon vertices. For n = 3 there is at most
one possible triangulation, thus, inevitably, T1 = T2. Now let us assume the theorem holds for all n less than or equal
to some k we shall show that it also holds for n = k + 1. According to the Theorem 1 every polygon with simply
connected interior has two disjoint ears Ei and Ej , say located at vertices Vi and Vj , respectively. If Ei appears in
both triangulations we can cut the ear resulting in two polygons with 3 and k vertices, respectively (as shown in Fig. 3)
and thus, according to the induction hypothesis one can transform one triangulation into the other via edge flips.

What if the ear Ei does not appear in either one or even in both of the given triangulations? We shall show that we
always can transform any given triangulation into a triangulation that has the ear Ei as one of its triangles. Let us first
look at the polygon Pi induced by the vertex Vi and all its neighbors defined by the edges of the triangulation, see
Fig. 4.

Fig. 3. Cutting ear Ei .

Fig. 4. The ear Ei does not appear in the triangulation.
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Fig. 5. Both Vi and Vj are connected to all vertices.

There are three possible scenarios:

1. The total number of vertices in Pi is less than k +1 (i.e., Vi is not connected to all other vertices). Then, according
to the induction hypothesis the polygon Pi can be transformed into any other triangulation in particular into one
with the ear Ei (and, obviously, there exists such a triangulation).

2. Pi has exactly k + 1 vertices which means that Vi is connected to every other vertex of the polygon, while the
polygon Pj defined by Vj (the vertex defining ear disjoint from Ei ) and all its neighbors has less than k + 1
vertices. According to the induction hypothesis Pj can be transformed into any other triangulation in particular to
one with ear Ej . At this moment Vi cannot be connected to Vj anymore and thus the new Pi will have less than
k + 1 points and, therefore, can be transformed into a triangulation in which the ear Ei appears.

3. Both Pi and Pj have exactly k + 1 vertices, that is both Vi and Vj are connected to every other vertex. It is easy
to see that this case is only possible if we have a convex quadrilateral. Indeed, let us show it by construction: con-
necting Vi to every other vertex would generate a triangulation T , since all faces are triangles. In this triangulation
Vj is connected to Vi and to its two neighbors: Vj+1 and Vj−1, Vj cannot be connected to any other vertex, since
this would break the planarity of the triangulation (triangulations are maximal planar graphs). But we assumed
that Vj was connected to all vertices, thus we, inevitably have a convex quadrilateral. This case is depicted in
Fig. 5. Here we can simply flip the edge ViVj . �

3. Flip-closure of triangulations of point sets in polygonal domains

Next we shall extend our proof to triangulations of points sets in polygonal domains. We start with the proof of a
very useful property of triangulations:

Lemma 1. Let T1 be a triangulation of a set S of points lying inside a polygon P and let L be a line segment
connecting two points a and b from the set S or from the vertices of P , such that L lies inside P , then T1 can be
transformed into a triangulation T2 that exhibits L as one of the edges, by edge-flipping operations. Moreover, only
edges that intersect with L need to be flipped.

Proof. Recall that any triangulation is a maximal planar graph, thus, if T1 does not contain L as an edge there exist
edges e1, e2, . . . , em of T1 that are intersected by L. We number the edges in the order they intersect L, say from a

to b. Let us also denote by li (ri ) the endpoint of ei that is to the left (right) of the directed line from a to b. Finally
we define a set of points u1, u2, . . . , un, each one corresponding to a set of consecutive li ’s that refer to the same
point, and a set of points v1, v2, . . . , vk , each one corresponding to a set of consecutive ri ’s. The ordered set of points
a,u1, u2, . . . , un, b, vk, vk−1, . . . , v1 defines a closed polygon (see Fig. 6 for possible examples). Note that the above
polygon is not necessarily simple, but its interior is simply connected and it obviously is triangulated and there are no
interior points in it. All this follows from the fact that the polygon is a union of triangles with edges that are crossed
by L. Since, this polygon is properly triangulated, let us denote this triangulation by t1. According to Theorem 2, t1
can be transformed into any other triangulation, including a triangulation t2, which has L as an edge. By transforming
t1 into t2 we also transform T1 into T2. �
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Fig. 6. Examples of possible polygons around L.

A similar lemma is used in other papers dealing with triangulations, for example (Dyn and Goren, 1993), proving
closeness of the triangulations under the flipping operation, based on additional geometric properties which we do not
need.

Finally, we are ready to prove the main statement of this paper:

Theorem 3. Given any two triangulations T1 and T2 of a set S of points lying inside a polygonal domain P , one can
transform T1 into T2 by means of edge flips.

Proof. Let us enumerate edges of the triangulation T1 in an arbitrary order e1, e2, . . . , er . We run over all edges of
T1, ei for i = 1,2, . . . , r and check whether current edge ei appears in a “transient triangulation” T2→1 (initially
T2→1 = T2). If it does we go to the next edge, if it does not then according to the Lemma 1 we can make it appear in
T2→1. Note that during this process we only flip edges that properly intersect ei from T1 in the triangulation T2→1, thus
we do not flip edges e1, e2, . . . , ei−1 since they cannot properly intersect with ei (as they all belong at this stage to both
T1 and T2→1). Moreover, flipping edges that are intersecting with ei in T2→1 we do not create new intersections with
ej for j < i because all these edges at this moment appear in T2→1 and the edge-flipping operation does not create
edge intersections (proper intersection of edges is not possible in triangulations). After we finish (i = r) all edges of
T1 appear in T2→1 and since all triangulations of given points set have the same number of edges we conclude that
T1 = T2→1. �
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